مدل فرایندی سیاستگذاری توسعه هوش‌مصنوعی در صنعت فینتک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مدیریت فناوری اطلاعات، دانشکدگان مدیریت، دانشگاه تهران، ایران

2 استاد، دانشکده مدیریت صنعتی و فناوری، دانشکدگان مدیریت، دانشگاه تهران، ایران

3 دانشیار، دانشکده مدیریت و حسابداری، دانشکدگان فارابی، دانشگاه تهران، ایران.

4 دانشیار، دانشکده مدیریت دولتی و علوم سازمانی، دانشکدگان مدیریت، دانشگاه تهران، ایران

10.22034/jstp.2025.12014.1912

چکیده

فینتک (فناوری مالی) به‌عنوان یکی از صنایع پیشرو در تحول دیجیتال، با بهره‌گیری از هوش‌مصنوعی توانسته است مزایای رقابتی قابل‌توجهی از جمله هوشمندی بیشتر، داده‌های بزرگ‌تر و در نتیجه عملکرد بهتری ایجاد کند. با این حال، گسترش کاربرد هوش‌مصنوعی در این صنعت، چالش‌های مالی، قانونی، اخلاقی و اجتماعی متعددی را برای کسب‌وکارها، مصرف‌کنندگان و نهادهای حاکمیتی و نظارتی به همراه داشته که ضرورت سیاستگذاری نظام‌مند در این حوزه را آشکار می‌سازد. هدف این تحقیق، ارائه یک مدل سیاستگذاری فرایندی برای توسعه هوش‌مصنوعی در صنعت فینتک است. در این تحقیق با با مبنا قرار دادن فرامدل توسعه هوش‌مصنوعی در صنعت فینتک ایران با استفاده از روش مطالعه موردی، اقدام شده ‌است. به این منظور 24 مورد شامل 6 مورد مستند مرتبط با موضوع تحقیق و 18 مورد مصاحبه شناسایی و تحت مطالعه موردی قرارگرفت. با هدف ایجاد فرایند سازمان‌یافته و امکان ارزیابی صحیح و عادلانه‌تر مصاحبه‌ها، پروتکل مصاحبه بر اساس پروتکل مصاحبه اسپیکارد تنظیم گردید و سپس انجام مصاحبه‌ها با نخبگان سیاستگذاری توسعه هوش‌مصنوعی و فعالان صنعت فینتک، بصورت عمیق و نیمه ساختاریافته و تا حصول کفایت نظری ادامه یافت. روش نمونه‌گیری در این تحقیق روش گلوله برفی و تجزیه ‌و تحلیل داده‌ها با استفاده از تحلیل مضمون صورت پذیرفته است. تحلیل تفسیری متن در این  تحقیق بر اساس روش هشت مرحله‌ای رابین و گیلهام  و تحلیل مضامین با روش جایگاه مضمون در شبکه مضامین اتراید_استرلینگ انجام شده است.در نهایت مدل سیاستگذاری توسعه هوش‌مصنوعی در صنعت فینتک با پنج‌گام اصلی شامل بررسی و شناسایی، ارائه و تحلیل‌، اتخاذ سیاست، اجرای سیاست، ارزیابی و بازنگری و 22 مرحله ارائه گردید. همچنین ملاحظات راهبردی و عملیاتی  مربوط به هر گام که از تحلیل مضامین احصاء شده به‌دست آمده بود، جهت بهبود در کیفیت اجرای مدل توضیح داده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Process-Oriented Policy Model for AI Development in Iran's FinTech Industry

نویسندگان [English]

  • Ali Eskandari 1
  • Amir Manian 2
  • Morteza Soltani 3
  • Hamidreza Yazdani 4
1 Ph.D. in Information Technology Management, Faculty of Industrial and Technology Management, University of Tehran, Iran.
2 Professor, Faculty of Industrial and Technology Management, School of Management, University of Tehran, Iran
3 Associate Professor, Faculty of Management and Accounting, Farabi School, University of Tehran, Iran
4 Associate Professor, Faculty of Public Administration and Organizational Sciences, School of Management, University of Tehran, Iran.
چکیده [English]

Financial technology (FinTech) has emerged as a pioneering industry in digital transformation by leveraging artificial intelligence to create substantial competitive advantages, including enhanced intelligence capabilities, big data utilization, and improved operational performance. However, the expanding application of AI in this sector has simultaneously introduced numerous financial, legal, ethical, and social challenges for businesses, consumers, and regulatory institutions, highlighting the critical need for systematic policymaking in this domain. This research aims to develop a process-oriented policy model for AI implementation within the FinTech industry. The study adopts a meta-model framework for AI development in FinTech and employs a case study methodology focusing on Iran's FinTech sector. The research methodology involved examining 24 distinct cases, comprising 6 relevant documentary sources and 18 in-depth interviews. To ensure methodological rigor, the interview process followed the SPICKARD protocol and consisted of semi-structured, intensive discussions with both AI policy experts and FinTech industry practitioners, continuing until theoretical saturation was achieved. Snowball sampling was utilized for participant selection, while data analysis was conducted through thematic analysis methods. Textual interpretation followed Rabiee and Gillham's eight-stage approach, with thematic analysis performed using Attride-Stirling's thematic network framework. The study ultimately proposes a comprehensive AI development policy model for the FinTech industry, structured around five core phases: investigation and identification, proposal and analysis, policy adoption, policy implementation, and evaluation and revision, encompassing a total of 22 specific stages. Furthermore, the research elucidates strategic and operational considerations derived from thematic analysis for each phase, providing valuable insights to enhance the model's implementation quality and effectiveness. The findings offer significant contributions to both academic discourse and practical policymaking in the evolving FinTech landscape.
 

کلیدواژه‌ها [English]

  • FinTech (financial technology)
  • artificial intelligence
  • Policymaking
  • artificial intelligence in fintech
[1] Eskandari, A., Manian, A., Soltani, M. and Yazdani, H. (2024). A Framework for AI Policy Development in the Fintech IndustryJournal of Iranian Public Administration Studies7(3), 1-49. {In Persian}. https://doi.org/10.22034/jipas.2024.440482.1691
[2] OECD (2021). Artificial Intelligence, Machine Learning and Big Data in Finance Opportunities, Challenges and Implications for Policy Makers. OECD, from https://www.oecd.org/en/publications/artificial-intelligence-machine-learning-and-big-data-in-finance_98e761e7-en.html
[3] OECD (2018). Financial Markets, Insurance and Pensions: Digitalisation and Finance. OECD. Retrieved October 07,2023. https://www.oecd.org/content/dam/oecd/en/publications/reports/2018/01/financial-markets-insurance-and-pensions-2018_9225d1bb/0021e92e-en.pdf
[4] Max Investment Holding. (2024). Fintech in Iran: The current state and future prospects [Research report]. Tehran, Iran. {In Persian}. Retrieved from   https://www.startup360.ir/max-holding-fintech-report-in-iran/
[5] E-Commerce Monitoring Center. (2021). Fintech Panorama 2021: A study of Iran's fintech ecosystem and digital finance industry. E-Commerce Monitoring Center.{In Persian}. https://ecmonitor.ir/
[6] Payandeh, R. & Afghahi, S.M. (2023). Fintech Ecosystem Governance: Systemic Problems and Development Solutions in Iran. Journal of Science & Technology Policy, 16(1), 17-34. {In Persian}. https://doi.org/10.22034/jstp.2023.11179.1586
[7] IBM. (2025). Security challenges of AI in financial services [White paper]. IBM Institute for Business Value. https://www.ibm.com/ai-security-finance.
[8] International Monetary Fund (IMF). (2024). Artificial Intelligence and its Impact on Financial Markets and Financial Stability. International Monetary Fund. https://www.imf.org/en/News/Articles/2024/09/06/sp090624-artificial-intelligence-and-its-impact-on-financial-markets-and-financial-stability
[9] Research Center of the Islamic Parliament of Iran. (2024). Budgetary Policies in Research and Technology Development [Policy report]. Research Center of the Islamic Parliament of Iran. {In Persian}. https://rc.majlis.ir/fa/report/show/1793154
[10] Abbass, H. (2021). Editorial: What is Artificial Intelligence? IEEE Transactions on Artificial Intelligence, 2(2), 94–95. https://doi.org/10.1109/TAI.2021.3096243
[11] Bhatti, B. M. (2020). 7 Types of AI Risk and How to Mitigate their Impact. Towards Data Science. https://medium.com/data-science/7-types-of-ai-risk-and-how-to-mitigate-their-impact-36c086bfd732
[12] Kanaani, F., Rasoulian, P., Hafezi, R. & Ahangari, S.S. (2023). Analysis of the artificial intelligence ecosystem in Iran and identifying institutional and functional gaps, Journal of Science & Technology Policy, 16 (2). 59-77. {In Persian}. https://doi.org/10.22034/jstp.2023.11303.1648
[13] World Economic Forum (2019). A Framework for Developing a National Artificial Intelligence Strategy: Centre for Fourth Industrial Revolution, World Economic Forum.  from https://www3.weforum.org/docs/WEF_National_AI_Strategy.pdf
[14] Babaeian, F., Safdari Ranjbar, M. and Hakim, A. (2023). Investigating the role of artificial intelligence in the public policy cycle; Metasynthesis approach. Journal of Improvement Management17(2), 115-150. {In Persian}. https://doi.org/10.22034/jmi.2023.396945.2957 
[15] Dietlmeier, S. F. (2024). Industrial Policy for Emerging Technologies: The Case of Narrow AI and the Manufacturing Value Chain as Blueprint for the Industrial Metaverse. University Library of Munich, Germany.  https://econpapers.repec.org/paper/pramprapa/121183.htm
[16] Safari, E. and Ebrahimi, K. (2022). Prioritizing application areas to deploy artificial intelligence technology using thematic analysis and COPRASResearch in Production and Operations Management13(4), 91-110. {In Persian}. https://doi.org/10.22108/pom.2023.134630.1457 
[17] Statista (2023). Value of Investment in Fintech Worldwide 2014-2025, by Investment Type. Statista.
[18] Cao, L., Yang, Q., & Yu, P. S. (2021). Data science and AI in FinTech: an overview. International Journal of Data Science and Analytics, 12(2), 81–99. https://doi.org/10.1007/s41060-021-00278-w
[19] Cao, L. (2020). AI in Finance: A Review. SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.3647625
[20] Propson, D., Ajvazoska, E., Ferri de Camargo Paes, F., Mutinda, E., Salman, D., Lagos Shemin, J., et al. (2024). The Future of Global Fintech: Towards Resilient and Inclusive Growth, World Economic Forum. https://dx.doi.org/10.2139/ssrn.4992737
[21] Maple, C., Szpruch, L., Epiphaniou, G., Staykova, K., & Avramovic, P. (2023). The AI Revolution: Opportunities and Challenges for the Finance Sector. Cornell university. https://doi.org/10.48550/arXiv.2308.16538
[22] Eskandari, A. (2024). Providing a policy model for AI development in Iran's fintech industry [Doctoral dissertation, University of Tehran]. {In Persian}
[23] Lui, A., & lamb, G. W. (2018). Artificial Intelligence and Augmented Intelligence Collaboration: Regaining Trust and Confidence in the Financial Sector. Information & Communications Technology Law, https://doi.org/10.1080/13600834.2018.1488659
[24] Restoy, f. (2019). Regulating Fintech: What is Going On, and Where Are the Challenges? Bank for International Settlements, Washington DC. https://www.bis.org/speeches/sp191017a.htm
[25] Susar, D., & Aquaro, V. (2019). Artificial Intelligence: Opportunities and Challenges for the Public Sector. Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance. https://doi.org/10.1145/3326365.3326420
[26] Molazadeh, H. (2021). Artificial Intelligence Technology and Governments' Strategic Approach. Tehran: Vice Presidency for Science and Technology, ICTC. {In Persian} Retrieved from: ictc.isti.ir/Zvot
[27] Sheikh Shoaei, H. (2021). A Review of International AI Policymaking. The First International Conference on Management and Industry. {In Persian} http://noo.rs/c4EZP
[28] Tan, J. (2025). Research on the Role of AI in FinTech and Consumer Trust. In SHS Web of Conferences (Vol. 213, p. 01012). EDP Sciences. ‏https://doi.org/10.1051/shsconf/202521301012
[29] Saunders, m., lewis, p., & thornhill, a. (2009). Research Methods for Business Students (fifth). Library of Congress. https://elib.vku.udn.vn/handle/123456789/5542
[30] Yin, R. K. (2018). Case study research and Applications Design and methods. Sixth edition. Sage Publications. https://lccn.loc.gov/2017040835
[31] Spickard, J. (2005). How to construct an interview protocol? Retrieved January, 31, 2009. ‏
[32] Rabin, D. (2005). Jews and Gypsies in 1753: A Case Study. Jews, Empire and Race: International Conference. from: https://experts.illinois.edu/en/publications/jews-and-gypsies-in-1753-a-case-study
[33] Gillham, B. (2000). Case Study Research Methods: Bloomsbury Publishing.
[34] Attride_Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research. Qualitative Research, 1(3), 384–405. https://doi.org/10.1177/146879410100100307
[35] Forbes (2022). The 10 Biggest Fintech Companies In America 2022 – Forbes Advisor. Published Jun 07, 2022, from https://www.forbes.com/sites/isabelcontreras/2022/06/07
[36] Yazdani, H., & Mohammadi, F. (2018). 30 Essential Points that Qualitative Researchers Should Know. Negah Danesh. {In Persian}
[37] Checkland, P., & Poulter, J. (2006). Learning for Action: A Short Definitive Account of Soft Systems Methodology and Its Use for Practitioners, Teachers and Students. John Wiley & Sons. ISBN: 9780470025543
[38] Riege, A. M. (2003). Validity and Reliability Tests in Case Study Research: A Literature Review With “hands‐on” Applications for Each Research Phase. Qualitative Market Research: An International Journal, 6(2), 75–86. https://doi.org/10.1108/13522750310470055