[1] Colton, W. M. (2011). The Outlook for Energy: A View to 2040. Exxon Mobil Corporation. Available from: http://corporate.exxonmobil.com/en/energy/energy-outlook/highlights/.
[2] Duddu, P. (2013). The world’s biggest natural gas reserves. Available from: http://www.hydrocarbons-technology.com/features/feature-the-worlds-biggest-natural-gas-reserves/.
[3] Kouchaki, E. (2011). An Introsuction to Underground Gas Storage Projects in Iran. In The first Iranian Virtual Conference on Underground Storage of Hydrocarbons, Shahrood University of Technology, Semnan, Iran. {In Persian}.
[4] Jacobsson, S., & Bergek, A. (2011). Innovation system analyses and sustainability transitions: Contributions and suggestions for research. Environmental Innovation and Societal Transitions, 1(1), 41-57.
[5] Wieczorek, A. J., & Hekkert, M. P. (2012). Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars. Science and Public Policy, 39(1), 74-87.
[6] Wieczorek, A. J., Hekkert, M. P., Coenen, L., & Harmsen, R. (2015). Broadening the national focus in technological innovation system analysis: The case of offshore wind. Environmental Innovation and Societal Transitions, 14, 128-148.
[7] Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sandén, B., & Truffer, B. (2015). Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, 16, 51-64.
[8] Lundvall, B.-A. (1992). National innovation system: towards a theory of innovation and interactive learning. Pinter, London.
[9] Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy policy, 28(9), 625-640.
[10] Malerba, F. (Ed.). (2004). Sectoral systems of innovation: concepts, issues and analyses of six major sectors in Europe. Cambridge University Press.
[11] Hekkert, M. P., Suurs, R. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological forecasting and social change, 74(4), 413-432.
[12] Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research policy, 37(3), 407-429.
[13] Hellsmark, H. (2010). Unfolding the formative phase of gasified biomass in the European Union: The role of system builders in realising the potential of second-generation transportation fuels from biomass. Chalmers University of Technology.
[14] Sabatier, P. A. (2006). Policy change and learning: An advocacy coalition approach (theoretical lenses on public policy).
[15] Smits, R., & Kuhlmann, S. (2004). The rise of systemic instruments in innovation policy. International journal of foresight and innovation policy, 1(1-2), 4-32.
[16] Heirani, H., Ghodsipour, H., Bagheri Moghadam, N., & Karimian, H. (2015). Dynamic Functional-Structural Analysis of Technology Development in Innovation System Framework. Case Study: Co-Production of Heat and Power. Journal of Technology Development Management, 2(2), 49-80.{In Persian}.
[17] Wieczorek, A. J., Negro, S. O., Harmsen, R., Heimeriks, G. J., Luo, L., & Hekkert, M. P. (2013). A review of the European offshore wind innovation system. Renewable and Sustainable Energy Reviews, 26, 294-306.
[16] Negro, S. O., & Hekkert, M. P. (2008). Explaining the success of emerging technologies by innovation system functioning: the case of biomass digestion in Germany. Technology Analysis & Strategic Management, 20(4), 465-482.
[17] Negro, S. O., Hekkert, M. P., & Smits, R. E. (2007). Explaining the failure of the Dutch innovation system for biomass digestion—a functional analysis. Energy policy, 35(2), 925-938.
[18] Lamprinopoulou, C., Renwick, A., Klerkx, L., Hermans, F., & Roep, D. (2014). Application of an integrated systemic framework for analysing agricultural innovation systems and informing innovation policies: Comparing the Dutch and Scottish agrifood sectors. Agricultural Systems, 129, 40-54.
[19] Kebebe, E., Duncan, A. J., Klerkx, L., De Boer, I. J. M., & Oosting, S. J. (2015). Understanding socio-economic and policy constraints to dairy development in Ethiopia: A coupled functional-structural innovation systems analysis. Agricultural Systems, 141, 69-78.
[20] Miremadi, T. & Rahimi rad, Z. (2016). Identification of System Failures in Biofuels Technological Innovation System of Iran. Journal of Science and Technology Policy, 8(1), 27-41. {In Persian}.
[21] Safdari Ranjbar, M., Rahmanseresht, H., Manteghi, M., & Ghazinoori, S. (2017). Sectoral Innovation System of a Complex Product System Industry: Gas Turbine. Journal of Science & Technology Policy, 9(4), 55-70. {In Persian}.
[22] Nilforoushan, H. & Arasti, M.R. (2014). The Weak Failure Process of Engineered Innovation Networks in the Initiation Phase: The Case Study of Gas Industry in Iran. Journal of Science & Technology Policy, 6(2), 77-92. {In Persian}.
[23] Carlsson, B. (2006). Internationalization of innovation systems: A survey of the literature. Research policy, 35(1), 56-67.
[24] OECD. (1997). Local systems of small firms and job creation.
[25] Woolthuis, R. K., Lankhuizen, M. & Gilsing, V. (2005). A system failure framework for innovation policy design. Technovation, 25(6), 609-619.
[26] Chaminade, C. & Edquist, C. (2010). Rationales for public policy intervention in the innovation process: A systems of innovation approach, The theory and practice of innovation policy. An international research handbook, 95-114.
[27] Weber, K. M. & Rohracher, H. (2012). Legitimizing research, technology and innovation policies for transformative change: Combining insights from innovation systems and multi-level perspective in a comprehensive ‘failures’ framework. Research Policy, 41(6), 1037-1047.
[28] Carlsson, B., Jacobsson, S., Holmén, M., & Rickne, A. (2002). Innovation systems: analytical and methodological issues. Research policy, 31(2), 233-245.
[29] Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: exploring micro–meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20(4), 443-464.
[30] Truffer, B., Rohracher, H., & Markard, J. (2009). The Analysis of Institutions in Technological Innovation Systems-A conceptual framework applied to biogas development in Austria. Copenhagen: Copenhagen Business School, 7.
[31] Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the academy of marketing science, 40(3), 414-433.
[32] Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Sage.
[33] Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
[34] Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195.