بازخوانی نقش پارک‌های علم و فناوری و صندوق نوآوری و شکوفایی در شکل‌دهی به پیشران‌های فناوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت فناوری، دانشگاه مالک اشتر، تهران، ایران

2 استاد دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیاردانشکده مدیریت، اقتصاد و مهندسی پیشرفت، دانشگاه علم و صنعت ایران، تهران، ایران

10.22034/jstp.2025.12111.1959

چکیده

صندوق نوآوری و شکوفایی و پارک‌های علم و فناوری به‌عنوان نهادهای واسطه‌ای شبکه‌ساز نقش محوری در طراحی و تسهیل تعاملات میان شرکت‌های دانش‌بنیان دارند و  این پژوهش با هدف بررسی نقش این نهادهای واسطه ای در شکل دهی به پیشران های نوآوری انجام شده است. در این راستا رویکرد تحلیل شبکه‌های اجتماعی برای تحلیل روابط بین شرکت‌های دانش‌بنیان بکار رفته است. داده‌های تحقیق شامل ۶۲۲۴ شرکت دانش‌بنیان حاضر در ۱۴۱۹ رویداد شبکه‌ساز صندوق است که یک شبکه هم‌حضوری با ۲۷۰۶۲۳ ارتباط را تشکیل می‌دهد. بر مبنای این داده‌ها شبکه هم‌حضوری مدل‌سازی و شاخص‌های ساختاری کلان (چگالی، میانگین درجه، قطر، ضریب خوشه‌بندی) محاسبه شد. سپس با به‌کارگیری الگوریتم‌های شناسایی اجتماع، خوشه‌های فناورانه طبیعی استخراج و چهار شاخص مرکزیت (درجه، بینابینی، نزدیکی و مقدارویژه) برای هر شرکت محاسبه گردید؛ این شاخص‌ها با روش تصمیم‌گیری چندمعیاره تاپسیس تلفیق شده تا فهرست شرکت‌های مستعد برای تشکیل پیشران تولید شود. نتایج نشان می‌دهد که شرکت‌های مستعد در حوزه‌های متنوع فناوری متمرکز شده‌اند؛ که به ترتیب در فناوری اطلاعات و ارتباطات (حدود ۲۲.۵٪)، برق و الکترونیک و سامانه‌های خودکار (حدود ۲۲.۳٪)، ماشین‌آلات و تجهیزات پیشرفته (حدود ۲۰٪) و مواد پیشرفته (حدود ۱۳.۷٪) و قرار دارند. همچنین تحلیل نقش نهادهای واسطه‌ای نشان می‌دهد که تقریباً یک سوم از شرکت‌های دانش‌بنیان مستعد برای تشکیل پیشران‌های فناوری در پارک‌ها و مراکز رشد مستقرند و این سهم بسته به خوشه فناورانه متفاوت است. بر اساس یافته‌های این پژوهش، جایگاه شرکت‌ها در ساختار شبکه همکاری که از طریق شاخص‌های مختلف مرکزیت و نتایج الگوریتم‌های اجتماع‌سنجی سنجیده شده عامل اصلی تعیین «قابلیت پیشرانی» آن‌ها است. بر این اساس، چارچوب ارائه‌شده می‌تواند ابزاری عملیاتی برای سیاست‌گذاران در هدف‌گذاری حمایت‌ها و طراحی برنامه‌های شبکه‌ساز فراهم کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Revisiting the Role of the Innovation and Prosperity Fund and Science & Technology Parks in Shaping Technology Drivers

نویسندگان [English]

  • Atieh Bozorgipour 1
  • Manouchehr Manteghi 2
  • Javad Mashayekh 3
1 PhD candidate, Department of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran
2 Professor, Department of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran
3 Assistant professor, Department of Management, Economics and Progress Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Innovation Fund and Technology Parks, as network-oriented intermediary institutions, play a pivotal role in designing and facilitating interactions among knowledge-based firms. Focusing on this role, the present study proposes an integrated framework that combines social network analysis and multi-criteria decision-making to identify firms with high potential to emerge as technology drivers within Iran’s innovation ecosystem. The dataset comprises the participation of 6,224 knowledge-based firms in 1,419 networking events organized by the Innovation Fund, forming a co-attendance network with 270,623 links. Based on these data, the co-attendance network was modeled and key structural metrics (density, average degree, diameter, clustering coefficient) were calculated. Community detection algorithms were then applied to extract natural technological clusters, and four centrality measures (degree, betweenness, closeness, eigenvector) were computed for each firm. These indicators were integrated using the TOPSIS multi-criteria decision-making method to generate a ranked list of firms with high potential to act as technology drivers.The results indicate that these high-potential firms are concentrated in several technological domains, primarily ICT (~22.5%), electronics and automation systems (~22.3%), advanced machinery and equipment (~20%), and advanced materials (~13.7%). The analysis also shows that approximately one-third of these potential driver firms are located in technology parks and incubators, with the share varying across technological clusters. Overall, the findings highlight that firms’ positions within the collaboration network—measured through centrality indicators and community detection outcomes—are the key determinants of their “driver potential.” Accordingly, the proposed framework offers a practical tool for policymakers to target support measures and design data-driven networking programs more effectively.

کلیدواژه‌ها [English]

  • Technological Frontrunners
  • Science And Technology Parks
  • Social Network Analysis
  • Knowledge-Based Firms
  • Innovation And Prosperity Fund
  • TOPSIS
[1] Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a Theory of EcosystemsStrategic Management Journal,  39 (8), 2255–2276.
https://doi.org/10.1002/smj.2904
[2] Adner, R. (2017). Ecosystem as Structure: An Actionable Construct for StrategyJournal of Management,  43 (1), 39–58.
https://doi.org/10.1177/0149206316678451
[3] Henderson, R. M., & Clark, K. B. (1990). Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established FirmsAdministrative Science Quarterly,  35 (1), 9–30.
https://doi.org/10.2307/2393549
[4] Freeman, L. C. (1978). Centrality in Social Networks: Conceptual ClarificationSocial Networks,  1 (3), 215–239.
https://doi.org/10.1016/0378-8733(78)90021-7
[5] Aarikka-Stenroos, L., Sandberg, B., & Lehtimäki, T. (2014). Networks for the Commercialization of Innovations: A Review of How Divergent Network Actors ContributeIndustrial Marketing Management,  43 (3), 365–381.
https://doi.org/10.1016/j.indmarman.2013.12.008
[6] Tanha, D., Salamzadeh, A., Allahian, Z., & Salamzadeh, Y. (2011). Commercialization of University Research and Innovations in Iran: Obstacles and SolutionsJournal of Knowledge Management, Economics and Information Technology,  1 (7), 126–146.
https://ssrn.com/abstract=2027642
[7] Nassiri-Koopaei, N., Aghaei, M., Ghiasvand, M., & Haghjoo, M. (2014). Commercialization of Biopharmaceutical Knowledge in Iran; Challenges and SolutionsDARU Journal of Pharmaceutical Sciences,  22 (1), 29.
https://doi.org/10.1186/2008-2231-22-29
[8] Tayebnia, M., & Seyyedamiri, N. (2024). The Challenges and Prospects of Developing an Innovation Intermediary Organization: A Case Study of IranJournal of Innovation and Entrepreneurship,  13 (1), 54.
https://doi.org/10.1186/s13731-024-00414-3
[9] Scaringella, L., & Burtschell, F. (2017). The Challenges of Radical Innovation in Iran: Knowledge Transfer and Absorptive Capacity Highlights — Evidence From a Joint Venture in the Construction SectorTechnological Forecasting and Social Change,  122, 151–169.
https://doi.org/10.1016/J.TECHFORE.2015.09.013
[10] Woods, J., Galbraith, B., & Hewitt-Dundas, N. (2019). Network Centrality and Open Innovation: A Social Network Analysis of an SME Manufacturing ClusterIEEE Transactions on Engineering Management,  69 (2), 351–364.
https://doi.org/10.1109/TEM.2019.2934765
[11] Pullen, A. J., Weerd-Nilssen, J. T., & Fiss, P. C. (2012). Open Innovation in Practice: Goal Complementarity and Closed NPD Networks to Explain Differences in Innovation Performance for SMEs in the Medical Devices SectorJournal of Product Innovation Management,  29 (6), 917–934.
https://doi.org/10.1111/j.1540-5885.2012.00973.x
[12] Belderbos, R., Faems, D., Leten, B., & Van Looy, B. (2010). Technological Activities and Their Impact on the Financial Performance of the Firm: Exploitation and Exploration Within and Between FirmsJournal of Product Innovation Management,  27 (6), 869–882.
https://doi.org/10.1111/j.1540-5885.2010.00757.x
[13] Cusumano, M. A. (2008). How Companies Become Platform LeadersMIT Sloan Management Review,  49 (2), 28–35.
[14] Burt, R. S. (2004). Structural Holes and Good IdeasAmerican Journal of Sociology,  110 (2), 349–399.
https://doi.org/10.1086/421787
[15] Gawer, A. (2014). Bridging Differing Perspectives on Technological Platforms: Toward an Integrative FrameworkResearch Policy,  43 (7), 1239–1249.
https://doi.org/10.1016/j.respol.2014.03.006
[16] Teece, D. J. (2018). Business Models and Dynamic CapabilitiesLong Range Planning,  51 (1), 40–49.
https://doi.org/10.1016/j.lrp.2017.06.007
[17] Cusumano, M. A., Gawer, A., & Yoffie, D. B. (2019). The Business of Platforms: Strategy in the Age of Digital Competition, Innovation, and Power. Harper Business, 25, 240–242.
https://doi.org/10.7202/1088148ar
[18] Borgatti, S. P., Brass, D. J., & Halgin, D. S. (2014). Social Network Research: Confusions, Criticisms, and Controversies. In Contemporary Perspectives on Organizational Social Networks (pp. 1–29). Emerald Group Publishing.
https://doi.org/10.1108/S0733-558X(2014)0000040001
[19] Prasannath, V., Sabapathy, S. R., & Renukappa, S. (2024). Impact of Government Support Policies on Entrepreneurial Orientation and SME PerformanceInternational Entrepreneurship and Management Journal,  20 (3), 1533–1595.
https://doi.org/10.1007/s11365-024-00993-3
[20] Li, M., Liu, Y., & Wang, J. (2024). How Government Subsidies Affect Technology Innovation in the Context of Industry 4.0: Evidence From Chinese New-Energy EnterprisesKybernetes,  53 (11), 4149–4171.
https://doi.org/10.3390/su17157168
[21] Songling, Y., Wenchao, L., & Xiang, Z. (2018). The Role of Government Support in Sustainable Competitive Position and Firm PerformanceSustainability,  10 (1), 1–17.
https://doi.org/10.3390/su10103495
[22] Anwar, M., & Li, S. (2021). Spurring Competitiveness, Financial and Environmental Performance of SMEs Through Government Financial and Non-Financial SupportEnvironment, Development and Sustainability,  23, 1–22.
https://doi.org/10.1007/s10668-020-00951-3
[23] Eshraghi, A., Miremadi, S. I., & Vesal, M. (2021). An Evaluation of the Impact of Support Policies on the Transition of Knowledge-Based Firms to the Growth StageScience and Technology Policy,  14 (1), 37–53.
https://doi.org/10.22034/jstp.2020.13.1.1327 [In Persian]
[24] Pooya, A., & Soltani-Fesaghandis, G. (2015). Investigating the Effect of Firm Size and Industry Growth Rate on Survival of Newcomer Companies in Electronic and Electric Industries of Mazandaran ProvinceIndustrial Management Studies,  13 (37), 55–90.
https://dor.isc.ac/dor/20.1001.1.22518029.1394.13.37.2.9
[25] Ghazinoori, S., Sajadifar, M., & Mohammadhashemi, Z. (2020). Providing a Logic Model of Fiscal and Tax Policy Instruments on the Law for Supporting Knowledge-Based Firms (KBFs)Rahyāft,  29 (4), 67–84.
https://doi.org/10.22034/rahyaft.2020.13799 [In Persian]
[26] Borgatti, S. P., & Halgin, D. S. (2011). On Network TheoryOrganization Science,  22 (5), 1168–1181.
https://doi.org/10.1007/978-1-4419-5513-5_2
[27] Shokouhyar, S., Maghsoudi, M., Khanizadeh, S., & Jorfi, S. (2024). Analyzing Supply Chain Technology Trends Through Network Analysis and Clustering Techniques: A Patent-Based StudyAnnals of Operations Research,  341, 313–348.
https://doi.org/10.1007/s10479-024-06119-w
[28] Mazlumi, S. H. H., & Kermani, M. A. M. (2022). Investigating the Structure of the Internet of Things Patent Network Using Social Network AnalysisIEEE Internet of Things Journal,  9 (15), 13458–13469.
https://doi.org/10.1109/JIOT.2022.3142191
[29] Osareh, F., Salehi Zahabi, S., & Akbarzadeh, F. (2022). Co-Authorship Network Analysis of Medical Images Researchers With Emphasis on Micro and Macro MetricsJournal of Clinical Research in Paramedical Sciences,  11 (2), e131621.
https://doi.org/10.5812/jcrps-131621
[30] Roshani, S., Ghazi-Nouri, S. S., & Tabatabaeian, S. H. (2013). A Co-Authorship Network Analysis of Iranian Researchers in Technology Policy and ManagementScience and Technology Policy,  6 (4), 1–17.
https://dor.isc.ac/dor/20.1001.1.20080840.1392.6.2.2.5 [In Persian]
[31] McAdam, M., & McAdam, R. J. T. (2008). High-Tech Start-Ups in University Science Park Incubators: The Relationship Between the Start-Up’s Lifecycle Progression and Use of the Incubator’s ResourcesTechnovation,  28 (5), 277–290.
https://doi.org/10.1016/j.technovation.2007.07.012
[32] Schwartz, M., & Hornych, C. J. T. (2010). Cooperation Patterns of Incubator Firms and the Impact of Incubator Specialization: Empirical Evidence From GermanyTechnovation,  30 (9–10), 485–495.
https://doi.org/10.1016/j.technovation.2010.05.001
[33] Nasr, A., & Hajihoseini, H. (2017). Science and Technology Parks (STPs) Roles in Innovation and Technology DevelopmentRahyaft,  27 (65), 35–56.
https://dor.isc.ac/dor/20.1001.1.10272690.1396.27.65.3.1 [In Persian]
[34] Shojaei, S. M. H., Ghazibi, J., & Sahebkar-Khorasani, S. M. (2021). Evaluating the Effectiveness of Support Policies for Knowledge-Based Companies in IranPublic Policy,  7 (1), 31–58.
https://doi.org/10.22059/jppolicy.2021.81987 [In Persian]
[35] Borgatti, S. P. (2005). Centrality and Network FlowSocial Networks,  27 (1), 55–71.
https://doi.org/10.1016/j.socnet.2004.11.008
[36] Jalayer, M., Hosseini, S. H., & Azar, A. S. (2018). A Hybrid Algorithm Based on Community Detection and Multi-Attribute Decision Making for Influence MaximizationComputers & Industrial Engineering,  120, 234–250.
https://doi.org/10.1016/j.cie.2018.04.049
[37] Fortunato, S., & Hric, D. (2016). Community Detection in Networks: A User GuidePhysics Reports, 659, 1–44.
https://doi.org/10.1016/j.physrep.2016.09.002