انقلاب هوش مصنوعی و پویایی‌های مارپیچ سه‌گانه در اقتصاد

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار، گروه مدیریت و اقتصاد، دانشکده علوم انسانی و اجتماعی، دانشگاه گلستان، گرگان، ایران

10.22034/jstp.2025.11860.1845

چکیده

این پژوهش به بررسی اثرات تحول‌آفرین انقلاب هوش مصنوعی بر پویایی‌های مدل مارپیچ سه‌گانه (تعامل بین دانشگاه، صنعت و دولت) و تأثیر آن بر توسعه اقتصادی می‌پردازد. مدل مارپیچ سه‌گانه، به‌عنوان یک چارچوب نظری برای تسهیل نوآوری، نقش مهمی در هدایت جریان دانش و تقویت همکاری‌های بین بخشی ایفا می‌کند. با ظهور فناوری‌های هوش مصنوعی، مرزهای سنتی میان دانشگاه‌ها، صنایع و دولت‌ها کمرنگ شده و نقش‌ها و تعاملات این ارکان بازتعریف شده‌اند. در این مطالعه، با بهره‌گیری از یک مدل سیستمی پویا، شوک ناشی از انقلاب هوش مصنوعی بر سازوکارهای خلق دانش، توسعه فناوری، و همکاری‌های بین بخشی، شبیه‌سازی و تحلیل شده است. یافته‌ها نشان می‌دهد که کارایی بالاتر دانشگاه‌ها در خلق دانش، حمایت‌های هدفمند دولت، و تعاملات قوی‌تر با صنایع پیشرفته، به‌طور قابل‌توجهی می‌توانند تأثیرات مثبت هوش مصنوعی بر رشد و توسعه اقتصادی را تقویت کنند. همچنین مشخص شد که کشورهایی با سهم بالاتر از صنایع پیشرفته و فناوری‌محور، مزایای بیشتری از این انقلاب خواهند برد. این پژوهش بر اهمیت سیاست‌هایی نظیر تقویت بوم‌سازگان‌های نوآوری، حمایت از خوشه‌های دانش‌بنیان، گسترش سرمایه‌گذاری در فناوری‌های پیشرفته، و ارتقای همکاری‌های بین دانشگاه‌ها، صنایع و دولت‌ها تأکید دارد. یافته‌ها نشان می‌دهد که توسعه اقتصادی پایدار در عصر هوش مصنوعی مستلزم رویکردی جامع و هم‌افزا میان این سه رکن اساسی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

AI Revolution and the Triple Helix Dynamics in Economy

نویسنده [English]

  • Hassan Daliri
Associate Professor, Department of Management and Economics, Faculty of Humanities and Social Sciences, Golestan University, Gorgan, Iran
چکیده [English]

This study examines the transformative effects of the Artificial Intelligence (AI) revolution on the dynamics of the Triple Helix model—interactions among universities, industries, and governments—and its implications for economic growth and development. The Triple Helix framework, as a theoretical model for facilitating innovation, plays a pivotal role in directing knowledge flows and fostering cross-sectoral collaboration. The advent of AI technologies has blurred traditional boundaries among universities, industries, and governments, reshaping roles and interactions within the innovation ecosystem. Using a dynamic general equilibrium model, this research simulates the impacts of an AI-induced shock on mechanisms of knowledge creation, technological advancement, and intersectoral collaboration. The findings reveal that greater efficiency in university knowledge production, targeted governmental support, and stronger collaboration with advanced industries significantly enhance the positive effects of AI on economic growth. Additionally, countries with a higher share of advanced, technology-driven industries stand to benefit more from this revolution. The study underscores the importance of policies that strengthen innovation ecosystems, support knowledge-based clusters, expand investments in advanced technologies, and promote collaborations among universities, industries, and governments. The results suggest that sustainable economic development in the AI era requires a comprehensive and synergistic approach among these three critical pillars.

کلیدواژه‌ها [English]

  • Triple Helix Model
  • Artificial Intelligence
  • Economic Growth And Development
  • Universities
  • Industries
  • Governments
[1].   Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix: University-Industry-Government Relations: A Laboratory For Knowledge-Based Economic Development. EASST Review, 1(14), 14-19.  https://ssrn.com/abstract=2480085 
[2].   Etzkowitz, H. (2008). The Triple Helix: University–Industry–Government Innovation In Action. Routledge.
[3].   Rüegg, W. (1992). A History Of The University In Europe. Cambridge University Press.
[4].   Ash, M. G. (2006). Bachelor Of What, Master Of Whom? The Humboldt Myth And Historical Transformations Of Higher Education In German-Speaking Europe And The US. European Journal of Education, 41(2), 245–267. https://doi.org/10.1111/j.1465-3435.2006.00258.x  
[5].   Etzkowitz, H. (2003). Innovation in Innovation: The Triple Helix of University-Industry-Government Relations. Social Science Information, 42(3), 293–337. https://doi.org/10.1177/05390184030423002
[6].   Marginson, S. (2011). Higher Education and Public Good. Higher Education Quarterly, 65(4), 411–433. https://doi.org/10.1111/j.1468-2273.2011.00439.x
[7].   Sarpong, D., AbdRazak, A., Alexander, E., & Meissner, D. (2017). Organizing Practices Of University, Industry, And Government That Facilitate (Or Impede) The Transition To A Hybrid Triple Helix Model Of Innovation. Technological Forecasting and Social Change, 123, 142-152. https://doi.org/10.1016/j.techfore.2017.06.026 .  
[8].   Cai, Y. (2020). Theorizing The Triple Helix Model: Past, Present, And Future. Triple Helix, 7(2-3), 189-226. https://doi.org/10.1163/21971927-bja10003
[9].   Radziwon, B., & Brem, A. (2017). Efficient Triple Helix Collaboration Fostering Local Niche Innovation Projects – A Case from Denmark. Technological Forecasting and Social Change, 123, 130-141. https://doi.org/10.1016/j.techfore.2017.06.029 .
[10].           Carayannis, E. G., & Campbell, D. F. (2009). 'Mode 3' and 'Quadruple Helix': Toward A 21st-Century Fractal Innovation Ecosystem. International Journal of Technology Management, 46(3-4), 201-234. https://doi.org/10.1504/IJTM.2009.023374
[11].           Carayannis, E. G., Barth, T. D., & Campbell, D. F. J. (2012). The Quintuple Helix Innovation Model: Global Warming As A Challenge And Driver For Innovation. Journal of Innovation and Entrepreneurship, 1(1), 1-12. https://doi.org/10.1186/2192-5372-1-2
[12].           Fidanoski, F., Simeonovski, K., Kaftandzieva, T., Ranga, M., Dana, L.-P., Davidovic, M., Ziolo, M., & Sergi, B. S. (2022). The Triple Helix In Developed Countries: When Knowledge Meets Innovation. Heliyon, 8(8), e10168. https://doi.org/10.1016/j.heliyon.2022.e10168.
[13].           Etzkowitz, H., & Leydesdorff, L. (2000). The Dynamics of Innovation: From National Systems and “Mode 2” To A Triple Helix of University–Industry–Government Relations. Research Policy, 29(2), 109-123. https://doi.org/10.1016/S0048-7333(99)00055-4
[14].           Zhuang, T., Zhou, Z., & Li, Q. (2021). University-Industry-Government Triple Helix Relationship and Regional Innovation Efficiency in China. Growth and Change, 52(1), 349–370. https://doi.org/10.1111/grow.12417 .
[15].           Cai, Y., & Etzkowitz, H. (2020). Theorizing the Triple Helix Model: Past, Present, and Future. Triple Helix, 2(3), 189–226. https://doi.org/10.1163/21971927-bja10003
[16].           Etzkowitz, H., & Zhou, C. (2017). The Triple Helix: University–Industry–Government Innovation and Entrepreneurship. Routledge, Abingdon.
[17].           Brem, A., & Radziwon, A. (2017). Efficient Triple Helix Collaboration Fostering Local Niche Innovation Projects – A Case from Denmark. Technological Forecasting and Social Change, 123, 130–141. https://doi.org/10.1016/j.techfore.2017.06.029  
[18].           Saad, M., Zawdie, G., & Malairaj, C. (2008). The Triple Helix Strategy For Universities In Developing Countries: The Experiences In Malaysia And Algeria. Science and Public Policy, 35(6), 431–443. https://doi.org/10.3152/030234208X323316
[19].           O’Shea, R. P., Allen, T. J., Morse, K. P., O’Gorman, C., & Roche, F. (2007). Delineating The Anatomy Of An Entrepreneurial University: The Massachusetts Institute Of Technology Experience. R&D Management, 37(1), 1–16. https://doi.org/10.1111/j.1467-9310.2007.00454.x
[20].           Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company.
[21].           Chui, M., Manyika, J., & Miremadi, M. (2018). The next era of AI. McKinsey & Company. https://www.scirp.org/reference/referencespapers?referenceid=3781518
[22].           Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2021). The Internet of Things and Cyber-Physical Systems in Smart Manufacturing. Journal of Manufacturing Science and Engineering, 143(5), 050801. https://doi.org/10.1115/1.4049404 .
[23].           Rasouli, M. (2024). The Transformation of Artificial Intelligence in the Financial Industry: An Opportunity for Developing EconomiesJournal of Science and Technology Policy17(3), 67-75. doi: 10.22034/jstp.2025.11788.1822  
[24].           Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World. Harvard Business Review, 96(1), 108-116.
[25].           Agrawal, A., Gans, J. S., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
[26].           He, Y., & Zhang, X. (2023). Data-Driven Decision Making In Manufacturing: AI and Analytics in Industry 4.0. Procedia CIRP, 103, 453-458. https://doi.org/10.1016/j.procir.2022.11.076 .
[27].           Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510. https://doi.org/10.1016/j.ymssp.2005.09.012 .
[28].           Wang, T., & Zhang, Q. (2023). AI-Driven Supply Chain Optimization: Recent Advances and Applications. International Journal of Production Economics, 241, 108290. https://doi.org/10.1016/j.ijpe.2021.108290 .
[29].           Shin, D., & Hwang, S. (2023). AI-Based Product Design and Innovation in Manufacturing. Journal of Intelligent Manufacturing, 34(5), 1217-1231. https://doi.org/10.1007/s10845-022-01969-5 .
[30].           Li, L., & Liu, Z. (2023). Artificial Intelligence in Predictive Maintenance: Advances and Future Challenges. Journal of Manufacturing Processes, 81, 591-601. https://doi.org/10.1016/j.jmapro.2023.04.041 .
[31].           Shao, Y., & Feng, X. (2023). Artificial Intelligence and Customization in Industrial Manufacturing. International Journal of Advanced Manufacturing Technology, 117(4), 1799-1809. https://doi.org/10.1007/s00170-021-08035-6 .
[32].           Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5), S71–S102. https://doi.org/10.1086/261725  
[33].           Aghion, P., & Howitt, P. (1992). A Model Of Growth Through Creative Destruction. Econometrica, 60(2), 323–351. https://doi.org/10.2307/2951599
[34].           Lewis, W. A. (1954). Economic Development with Unlimited Supplies of Labour. The Manchester School, 22(2), 139–191. https://doi.org/10.1111/j.1467-9957.1954.tb00021.x.
[35].           Leydesdorff, L., & Etzkowitz, H. (1998). The Triple Helix as a Model for Innovation Studies. Science and Public Policy, 25(3), 195-203.
[36].           Zhavoronkov, A., Ivanenkov, Y. A., & Aliper, A. (2020). Deep Learning Enables Rapid Identification Of Potent DDR1 Kinase Inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x.
[37].           Van der Zwaan, B. (2017). Higher Education in 2040: A Global Approach. Amsterdam University Press.
[38].           Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2021). Brain Intelligence: Go Beyond Artificial Intelligence. Neuroscience Bulletin, 37(4), 365–377. https://doi.org/10.1007/s12264-021-00638-6
[39].           UNESCO. (2022). AI in Education: Policy Recommendations and Guidelines. UNESCO Publishing. https://doi.org/10.54675/PCSP7350
[40].           Miremadi, S. I. and Honarvar, R. (2024). An Analytical Strategy for Understanding The Trajectory of Development Of Artificial Intelligence In IranJournal of Science and Technology Policy17(3), 1-8. doi: 10.22034/jstp.2025.14080