توسعه و تکامل بوم‌سازگان نوآوری از دید نظریه پیچیدگی و آشوب: یک مرور نظام‌مند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت تکنولوژی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استاد گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

3 عضو هیات علمی دانشکده کسب و کار، دانشگاه کاپیلانو، ونکوور، کانادا.

چکیده

در این پژوهش از مرور نظام‌مند برای ارزیابی تاثیر دیدگاه نظریه پیچیدگی و تئوری آشوب در توضیح و درک روند توسعه و تکامل بوم‌سازگان‌های نوآوری استفاده شده است. برای انجام مرور نظام‌مند بر اساس پروتکل PRISMA مطالب منتشر شده از سال 2005 تا آخر سال 2023 در حوزه بوم‌سازگان نوآوری که بطور مستقیم یا غیر‌مستقیم دو نظریه پیچیدگی و آشوب یا ویژگی‌های آن‌ها را برای تحلیل بکار برده بودند، شامل 43 مقاله انتخاب شدند. یافته‌ها نشان می‌دهد که هرچند انتخاب بهترین چارچوب برای درک توسعه و تکامل بوم‌سازگان‌های نوآوری به عوامل متعددی از جمله هدف پژوهش، ماهیت بوم‌سازگان، سطح تحلیل و داده‌های موجود بستگی دارد؛ اما بر اساس نتایج بدست آمده از این مرور نظام‌مند و اصول و ویژگی‌های نظریه پیچیدگی، تئوری آشوب و سیستم‌های پیچیده سازگارشونده، ما یک چارچوب نظری جدید و جامع برای درک توسعه و تکامل بوم‌سازگان‌های نوآوری شامل اجزای اصلی بازیگران و روابط، فرآیندهای نوآوری، محیط، دینامیک و تکامل، کارایی همزیستی، نقش فناوری‌های توانمندساز، داده و اطلاعات، نقش دولت و سیاست‌گذاری، نقش فرهنگ و جامعه، نوآیندی و خودسازماندهی، افق‌های زمانی و لبه آشوب، حساسیت به شرایط اولیه و فضای حالت و جاذب‌های عجیب پیشنهاد می‌کنیم. چارچوب نظری پیشنهادی در طراحی سیاست‌های نوآوری، ارزیابی نقاط قوت و ضعف بوم‌سازگان و شناسایی فرصت‌های بهبود، شبیه‌سازی رفتار بوم‌سازگان‌های نوآوری و پیش‌بینی تغییرات آینده و برنامه‌ریزی برای آموزش و پژوهش در حوزه نوآوری کاربرد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development and Evolution of Innovation Ecosystem from The Perspective of Complexity and Chaos Theory: A Systematic Review

نویسندگان [English]

  • Mehrnaz Moeenian 1
  • Sepehr Ghazinoory 2
  • Pegah Yaghmaie 3
1 Ph.D. Candidate, Department of Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor, Department of Information Technology Management, Tarbiat Modares University, Tehran, Iran
3 Faculty Member, School of Business-Capilano University, Vancouver, Canada
چکیده [English]

In this research, a systematic review was conducted to assess the impact of complexity and chaos theory on understanding and explaining the development and evolution of innovation ecosystems. To this end, the theoretical foundations required for this study were collected by first reviewing the literature on these two theories. Then PRISMA protocol was followed, and published articles from 2005 to the end of 2023 in the field of innovation ecosystems that directly or indirectly utilized complexity and chaos theory or their characteristics for analysis were selected and filtered in four stages upon document type and language, relation to innovation ecosystem development and evolution and using complexity as a theory not as a common word, that resulting in 43 articles. The findings indicate that selecting the most suitable framework for understanding the development and evolution of innovation ecosystems depends on several factors, including the research objective, the nature of the ecosystem, the level of analysis, and the available data. Accordingly, by combining the findings and results obtained from this systematic review and the principles and characteristics of complexity theory, chaos theory, and complex adaptive systems, a new and comprehensive theoretical framework is proposed for understanding the development and evolution of innovation ecosystems. This framework includes the key components of actors and relationships, innovation processes, environment, dynamics and evolution, co-opetition performance, the role of enabling technologies, the importance of data and information, the role of government and policymaking, the role of culture and society, novelty and self-organization, time horizons and the edge of chaos, sensitivity to initial conditions, and state space and strange attractors. It can be applied for policy design, ecosystem assessment, prediction, and education planning.

کلیدواژه‌ها [English]

  • Innovation Ecosystem
  • Development And Evolution
  • Complexity
  • Chaos Theory
  • Systematic Review
  • PRISMA
[1]           Crescenzi, R., Dyèvre, A., & Neffke, F. (2022). Innovation Catalysts: How Multinationals Reshape the Global Geography of Innovation. Economic Geography, 98(3), 199-227. https://doi.org/10.1080/00130095.2022.2026766
[2]           Russell, M. G., & Smorodinskaya, N. V. (2018). Leveraging Complexity for Ecosystemic Innovation. Technological Forecasting and Social Change, 136, 114-131. https://doi.org/10.1016/j.techfore.2017.11.024
[3]           Kashani, E. S., & Roshani, S. (2019). Evolution of Innovation System Literature: Intellectual Bases and Emerging Trends. Technological forecasting and social change, 146, 68-80. https://doi.org/10.1016/j.techfore.2019.05.010
[4]           Weil, H. B., Sabhlok, V. P., & Cooney, C. L. (2014). The Dynamics of Innovation Ecosystems: A Case Study of The US Biofuel Market. Energy strategy reviews, 3, 88-99. https://doi.org/10.1016/j.esr.2014.07.005
[5] Boyer, J. (2020). Toward an Evolutionary and Sustainability Perspective of the Innovation Ecosystem: Revisiting the Panarchy Model. Sustainability, 12(8), 3232. https://doi.org/10.3390/su12083232
[6] Moeenian, M., Ghazinoory, S., & Yaghmaie, P. (2024). Analysing The Performance of a Health Innovation Ecosystem in the COVID-19 Crisis: Complexity and Chaos Theory Perspective. Health Research Policy and Systems, 22(1), 59. https://doi.org/10.1186/s12961-024-01136-4
[7] Surie, G. (2017). Creating the Innovation Ecosystem for Renewable Energy Via Social Entrepreneurship: Insights from India. Technological Forecasting and Social Change, 121, 184-195. https://doi.org/10.1016/j.techfore.2017.03.006
[8] Poutanen, P., Soliman, W., & Ståhle, P. (2016). The Complexity of Innovation: An Assessment and Review of the Complexity Perspective. European Journal of Innovation Management, 19(2), 189-213. http://dx.doi.org/10.1108/EJIM-03-2014-0036
[9] Brown, S. L. (1998). Competing on the Edge: Strategy as Structured Chaos. Harvard Business School Press.
[10] Brem, A., Nylund, P. A., & Roshani, S. (2024). Unpacking The Complexities of Crisis Innovation: A Comprehensive Review of Ecosystem-Level Responses to Exogenous Shocks. Review of Managerial Science, 18(8), 2441-2464. https://doi.org/10.1007/s11846-023-00709-x
[11] Baranger, M. (2000). Chaos, Complexity, and Entropy. New England Complex Systems Institute, Cambridge, 17.
[12] Elyasi, M., & Malekifar, F. (2019). STI Policies to Augment Innovation Ecosystems. Journal of Science and Technology Policy, 12(2), 209-220. {In Persian}.
[13] Sun, J., Zou, H., Zhang, S., & Qin, H. (2022). Gravitational Agglomeration of Local Synchronization Data Set in Innovation Ecosystem: A Game between Innovation and Institutional Governance. Mathematical Problems in Engineering, 2022(1), 9620979. https://doi.org/10.1155/2022/9620979
[14] Ghazinoory, S. (2021). Innovation Ecosystems or Innovation Boundaries? Journal of Science and Technology Policy, 14(3): p. 1-1. {In Persian}.
 https://doi.org/10.22034/jstp.2021.13899
[15] Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of internal medicine, 151(4), 264-269.
[16] Mahdad, M., & Roshani, S. (2024). The Open Innovation Kaleidoscope: Navigating Pathways and Overcoming Failures. Review of Managerial Science, 1-32. https://doi.org/10.1007/s11846-024-00804-7
[17] Feng, Z., González, V. A., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2018). Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review. Computers & Education, 127, 252-266.
[18] Carayannis, E. G., & Campbell, D. F. (2009). 'Mode 3'and'quadruple Helix': Toward A 21st Century Fractal Innovation Ecosystem. International Journal of Technology Management, 46(3-4), 201-234.
[19] Benitez, G. B., Ayala, N. F., & Frank, A. G. (2020). Industry 4.0 Innovation Ecosystems: An Evolutionary Perspective on Value Cocreation. International Journal of Production Economics, 228, 107735. https://doi.org/10.1016/j.ijpe.2020.107735
[20] Chae, B. K. (2019). A General Framework for Studying the Evolution of the Digital Innovation Ecosystem: The Case of Big Data. International Journal of Information Management, 45, 83-94. https://doi.org/10.1016/j.ijinfomgt.2018.10.023
[21] de Vasconcelos Gomes, L. A., Salerno, M. S., Phaal, R., & Probert, D. R. (2018). How Entrepreneurs Manage Collective Uncertainties in Innovation Ecosystems. Technological Forecasting and Social Change, 128, 164-185. https://doi.org/10.1016/j.techfore.2017.11.016
[22] Hu, T.-S., Lin, C.-Y., & Chang, S.-L. (2005). Technology-Based Regional Development Strategies and the Emergence of Technological Communities: A Case Study of HSIP, Taiwan. Technovation, 25(4), 367-380. https://doi.org/10.1016/j.technovation.2003.09.002
[23] Kolloch, M., & Dellermann, D. (2018). Digital Innovation in The Energy Industry: The Impact of Controversies on The Evolution of Innovation Ecosystems. Technological Forecasting and Social Change, 136, 254-264. http://dx.doi.org/10.1016/j.techfore.2017.03.033
[24] Mamun, A. A. (2018). Diffusion of Innovation Among Malaysian Manufacturing SMEs. European Journal of Innovation Management, 21(1), 113-141. https://doi.org/10.1108/EJIM-02-2017-0017
[25] Hlongwane, S., & Grobbelaar, S. S. (2022). A Practical Framework for Value Creation in Health Information Systems from An Ecosystem Perspective: Evaluated in The South African Context. Frontiers in Psychology, 13, 637883. https://doi.org/10.3389/fpsyg.2022.637883
[26] Pombo-Juárez, L., Könnölä, T., Miles, I., Saritas, O., Schartinger, D., Amanatidou, E., & Giesecke, S. (2017). Wiring Up Multiple Layers of Innovation Ecosystems: Contemplations from Personal Health Systems Foresight. Technological Forecasting and Social Change, 115, 278-288. http://dx.doi.org/10.1016/j.techfore.2016.04.018
[27] Mahmoud-Jouini, S. B., & Charue-Duboc, F. (2017). Experimentations in Emerging Innovation Ecosystems: Specificities and Roles. The Case of The Hydrogen Energy Fuel Cell. International Journal of Technology Management, 75(1-4), 28-54.
[28] Zhang, W., Pingfeng, L., & Zhang, J. (2019). Multi-Group Symbiotic Evolution Mechanism in An Innovative Ecosystem: Evidence from China. Revista de Cercetare si Interventie Sociala, 66, 249. https://doi.org/10.33788/rcis.66.15
[29] Nylund, P. A., Brem, A., & Agarwal, N. (2022). Enabling Technologies Mitigating Climate Change: The Role of Dominant Designs in Environmental Innovation Ecosystems. Technovation, 117, 102271. https://doi.org/10.1016/j.technovation.2021.102271
[30] Pushpananthan, G., & Elmquist, M. (2022). Joining Forces to Create Value: The Emergence of An Innovation Ecosystem. Technovation, 115, 102453. https://doi.org/10.1016/j.technovation.2021.102453
[31] Dedehayir, O., & Seppänen, M. (2015). Birth And Expansion of Innovation Ecosystems: A Case Study of Copper Production. Journal of technology management & innovation, 10(2), 145-154.
[32] Gamidullaeva, L., Tolstykh, T., Bystrov, A., Radaykin, A., & Shmeleva, N. (2021). Cross-sectoral digital platform as a tool for innovation ecosystem development. Sustainability, 13(21), 11686. https://doi.org/10.3390/su132111686
[33] Breslin, D., Kask, J., Schlaile, M., & Abatecola, G. (2021). Developing A Coevolutionary Account of Innovation Ecosystems. Industrial Marketing Management, 98, 59-68. https://doi.org/10.1016/j.indmarman.2021.07.016
[34] Gifford, E., McKelvey, M., & Saemundsson, R. (2021). The Evolution of Knowledge-Intensive Innovation Ecosystems: Co-Evolving Entrepreneurial Activity And Innovation Policy In The West Swedish Maritime System. Industry and Innovation, 28(5), 651-676. https://doi.org/10.1080/13662716.2020.1856047
[35] Drori, I., & Lavie, D. (2023). How Do Innovation Ecosystems Emerge? The Case of Nanotechnology in Israel. Journal of Management Studies. https://doi.org/10.1111/joms.13026
[36] Castro, L. (2015). Strategizing Across Boundaries: Revisiting Knowledge Brokering Activities in French Innovation Clusters. Journal of Knowledge Management, 19(5), 1048-1068. http://dx.doi.org/10.1108/JKM-02-2015-0050
[37] Grobbelaar, S. (2018). Developing a local Innovation Ecosystem Through a University-Coordinated Innovation Platform: E University of Fort Hare. IN PLACE, 122. https://doi.org/10.1080/0376835X.2017.1421902
[38] Harmaakorpi, V., & Rinkinen, S. (2020). Regional development platforms as incubators of business ecosystems. Case study: The Lahti urban region, Finland. Growth and Change, 51(2), 626-645. https://doi.org/10.1111/grow.12375
[39] Aryan, V., Bertling, J., & Liedtke, C. (2021). Topology, Typology, And Dynamics of Commons‐Based Peer Production: On Platforms, Actors, And Innovation In The Maker Movement. Creativity and innovation management, 30(1), 63-79. https://doi.org/10.1111/caim.12392
[40] Ngongoni, C. N., Grobbelaar, S., & Schutte, C. S. (2022). Making Sense of the Unknown: Using Change Attractors to Explain Innovation Ecosystem Emergence. Systemic Practice and Action Research, 35(2), 227-252. https://doi.org/10.1007/s11213-021-09564-x
[41] Feng, N., Fu, C., Wei, F., Peng, Z., Zhang, Q., & Zhang, K. H. (2019). The Key Role of Dynamic Capabilities in The Evolutionary Process for A Startup to Develop into An Innovation Ecosystem Leader: An In-depth Case Study. Journal of Engineering and Technology Management, 54, 81-96. https://doi.org/10.1016/j.jengtecman.2019.11.002
[42] Yilmaz, L. (2011). Toward Multi-Level, Multi-Theoretical Model Portfolios for Scientific Enterprise Workforce Dynamics. Journal of Artificial Societies and Social Simulation, 14(4), 2.
[43] Wu, R., Wang, Z., & Shi, Q. (2021). Increment Of Heterogeneous Knowledge in Enterprise Innovation Ecosystem: An Agent-Based Simulation Framework. Complexity, 2021, 1-16. https://doi.org/10.1155/2021/9550232
[44] Vidmar, M. (2019). Agile Space Living Lab–The Emergence of a New High-Tech Innovation Paradigm. Space Policy, 49, 101324. https://doi.org/10.1016/j.spacepol.2019.05.002
[45] Chen, X., Sun, Q., Xia, F., & Chen, Y.-H. (2021). Robust Resource Allocation Strategy for Technology Innovation Ecosystems: State and Control Constraints. Nonlinear Dynamics, 103, 2931-2954. https://doi.org/10.1007/s11071-021-06215-7