Governance and Artificial Intelligence: A Scientometric Narrative of Two Interwoven Stories

Document Type : Original Article

Authors

1 Ph.D. Candidate in Technology Management, Faculty of Management and Accounting, Islamic Azad University, South Tehran Branch, Tehran, Iran

2 Assistant Professor, Department of Technology Management, Faculty of Management and Accounting, Islamic Azad University, South Tehran Branch, Tehran, Iran

10.22034/jstp.2025.11814.1837

Abstract

Artificial intelligence, as a transformative technology, profoundly impacts societies and governance systems. This influence is studied in two main domains: AI governance and the application of AI in governance. This research aims to explore the bidirectional relationship between these two concepts and to elucidate their similarities, differences, and synergies through a scientometric analysis using the Bibliometrix tool in the R environment. Data were collected from the Web of Science database and analyzed to identify thematic trends, conceptual clusters, and key focal points in both domains. The findings indicate that ethics, data governance, and responsible regulation are critical shared themes between the two areas. AI governance primarily focuses on regulatory challenges such as mitigating algorithmic biases, ensuring transparency, and enhancing accountability. Meanwhile, the application of AI in governance emphasizes optimizing public services, data-driven decision-making, and increasing transparency in government systems. This study highlights the deep interconnections between AI and governance, suggesting significant policy and research implications in this evolving landscape.

Keywords

Main Subjects


References
[1] Wu, W., Huang, T., & Gong, K. (2020). Ethical Principles And Governance Technology Development of AI In China. Engineering, 6(3), 302-309. https://doi.org/10.1016/j.eng.2019.12.015 
[2] Gasser, U., & Almeida, V. (2017). The Ethics of Artificial Intelligence: A Literature Review. Computers in Human Behavior, 73, 220-229. https://doi.org/10.1016/j.chb.2017.03.002.
[3] Shukla, S. (2024). Principles Governing Ethical Development and Deployment of AI. International Journal of Engineering, Business and Management. https://doi.org/10.22161/ijebm.8.2.5 
[4] Schneider, J., Abraham, R., Meske, C., & Vom Brocke, J. (2023). Artificial Intelligence Governance for Businesses. Information Systems Management, 40(3),229-249. https://doi.org/10.1080/10580530.2022.2085825 
[5] Choung, H., David, P., & Seberger, J. S. (2024). A Multilevel Framework for AI Governance. In The Routledge Handbook of Global and Digital Governance Crossroads (pp. 310-323). Routledge India. https://doi.org/10.4324/9781003316077-25 
[6] Winfield, A. F., & Jirotka, M. (2018). Ethical Governance is Essential to Building Trust in Robotics and Artificial Intelligence Systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2133), 20180085. https://doi.org/10.1098/rsta.2018.0085 
[7] Gill, A. S., & Germann, S. (2022). Conceptual and Normative Approaches to AI Governance for a Global Digital Ecosystem Supportive of the UN Sustainable Development Goals (SDGs). AI and Ethics2(2), 293-301. https://doi.org/10.1007/s43681-021-00058-z 
[8] Stark, L., Greene, D., & Hoffmann, A. L. (2021). Critical Perspectives on Governance Mechanisms for AI/ML Systems. The cultural life of machine learning: An incursion into critical AI studies, 257-280. https://doi.org/10.1007/978-3-030-56286-1_9 
[9] Sigfrids, A., Nieminen, M., Leikas, J., & Pikkuaho, P. (2022). How Should Public Administrations Foster the Ethical Development and Use of Artificial Intelligence? A Review of Proposals for Developing Governance of AI. Frontiers in Human Dynamics, 4, 858108. https://doi.org/10.3389/fhumd.2022.858108 
[10] Rajagopal, M., Sivasakthivel, R., Ramar, G., Mansurali, A., & Karuppasamy, S. K. (2023, October). A Conceptual Framework for AI Governance in Public Administration–A Smart Governance Perspective. In 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 488-495). IEEE. https://doi.org/10.1109/i-smac58438.2023.10290366 
[11] Taeihagh, A. (2021), Governance of Artificial Intelligence, Policy and Society, 40 (2), 137–57. https://doi.org/10.1080/14494035.2021.1928377 
[12] de Almeida, P. G. R., dos Santos, C. D., & Farias, J. S. (2021). Artificial Intelligence Regulation: a Framework for Governance. Ethics and Information Technology23(3), 505-525. https://doi.org/10.1007/s10676-021-09593-z 
[13] Kurshan, E., Shen, H., & Chen, J. (2020, October). Towards Self-Regulating AI: Challenges and Opportunities of AI Model Governance In Financial Services. In Proceedings of the First ACM International Conference on AI in Finance (pp. 1-8). https://doi.org/10.1145/3383455.3422564 
[14] Perry, M., & Uuk, M. (2019). AI Governance: Policy Frameworks, Strategies, and the Challenges of Integration. International Journal of Public Administration, 42(7), 598-611. https://doi.org/10.1080/01900692.2019.1633503.
[15] Schiff, D., Biddle, J., Borenstein, J., & Laas, K. (2020, February). What's Next for Ai Ethics, Policy, and Governance? A Global Overview. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 153-158). https://doi.org/10.1145/3375627.3375804 
[16] Ortega, E., Tran, M., & Bandeen, G. (2023). AI Digital Tool Product Lifecycle Governance Framework Through Ethics and Compliance by Design. 2023 IEEE Conference on Artificial Intelligence (CAI), 353–356. https://doi.org/10.1109/cai54212.2023.00155 
 [17] United Nations Development Programme, (1997) Governance for Sustainable Human Development. https://doi.org/10.18356/078473ef-en 
[18]  Hajihoseini, H. and Karimmian, Z. (2019). STI Policy Process and Its Governance. Journal of Science and Technology Policy, 12(2), 71-86.
doi: 20.1001.1.20080840.1398.12.2.6.1
[19] Paul, R. Carmel, E. Cobbe, J. (2024) Handbook on Public Policy and Artificial Intelligence, Political Science and Public Policy Subject Collection http://dx.doi.org/10.4337/9781803922171.
[20] Gil-Garcia, J. R., Zhang, J., & Puron-Cid, G. (2016). Conceptualizing Smartness in Government: an Integrative and Multi-Dimensional View. Government Information Quarterly, 33(3), 524–534. https://doi.org/10.1016/j.giq.2016.03.002 
[21] Chatterjee, S., Kar, A. K., & Gupta, M. P. (2018). Success of Iot in Smart Cities of India: An Empirical Analysis. Government Information Quarterly, 35(3), 349–361. doi:10.1016/j.giq.2018.05.00.
[22]  Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies, Oxford University Press , ISBN: 978-0199678112. https://doi.org/10.1007/s11023-015-9377-7 
[23] Fetais, A., Faisal, M., Sabir, L., & Esmael, B. (2022). Artificial Intelligence Adoption for E-Government: Analysis of Enablers in an Emerging Economy. Int. J. Electron. Gov. Res., 18, 1-21.  https://doi.org/10.4018/ijegr.300773 
[24] Saura, J. R., & Debasa, F. (Eds.). (2022). Handbook of research on artificial intelligence in Government Practices and Processes. IGI Global. https://doi.org/10.4018/978-1-7998-9609-8 
[25] Aria, M. & Cuccurullo, C. (2017) Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis, Journal of Informetrics, 11(4), pp 959-975, Elsevier. https://doi.org/10.1016/j.joi.2017.08.007 
[26] Lilkov, D. (2021). Regulating Artificial Intelligence in the EU: A risky game. European View, 20, 166–174. https://doi.org/10.1177/17816858211059248 
[27]  Farshid, R. , Faraji, A. and Jafari, S. (2022). Analysing the Content of Global Smart City Studies in Dealing with the Covid-19 Pandemic. Journal of Science and Technology Policy, 15(2), 39-54. doi: 10.22034/jstp.2022.13940
[28] Hosseini, E., Taghizadeh Milani, K., & Sabetnasab, M. S. (2025). Development and Maturity of co-word Thematic Clusters: the Field of Linked Data. Library Hi Tech, 43(1), 81-113. https://doi.org/10.1108/lht-10-2022-0488 
[29] Cobo, M., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An Approach for Detecting, Quantifying, And Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory field. Journal of Informetrics, 5, 146-166. https://doi.org/10.1016/j.joi.2010.10.002 
[30] Bai, Y., Li, H., & Liu, Y. (2020). Visualizing Research Trends and Research Theme Evolution in E-Learning Field: 1999–2018. Scientometrics, 126, 1389-1414. https://doi.org/10.1007/s11192-020-03760-7 
[31] Zhao, R., & Wu, S. (2014). Study on Themes and Authors’ Influence of Open Access in China. Scientometrics, 101, 1165-1177. https://doi.org/10.1007/s11192-014-1415-3 
[32] Chun-lei, Y., & Lu, F. (2012). The Research of Theme Identification in Scientific Documents. 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 3, 715-718. https://doi.org/10.1109/csae.2012.6273049 
[33] Li, Q., Han, J., Ko, Y. O. J., Li, Q., & Lo, C. (2020). A Content Mining and Network Analysis Method for the Thematic Evolution of Educational Leadership. Journal of Scientific Methods Studies, 10, 86-98. https://doi.org/10.33168/jsms.2020.0307 
[34] Sitarz, R., & Kraslawski, A. (2012). Application of Semantic and Lexical Analysis to Technology Forecasting by Trend Analysis - Thematic Clusters in Separation Processes. Computer-Aided Chemical Engineering, 30, 437-441. https://doi.org/10.1016/b978-0-444-59519-5.50088-5 
[35] Glänzel, W., Heeffer, S., & Thijs, B. (2017). Lexical Analysis of Scientific Publications for Nano-Level Scientometrics. Scientometrics111, 1897-1906. https://doi.org/10.1007/s11192-017-2336-8 
[36] Wang, S., & Koopman, R. (2017). Clustering Articles Based on Semantic Similarity. Scientometrics111, 1017-1031. https://doi.org/10.1007/s11192-017-2298-x 
[37] Hoffman, D., & Franke, G. (1986). Correspondence Analysis: Graphical Representation of Categorical Data in Marketing ResearchJournal of Marketing Research, 23, 213 - 227. https://doi.org/10.1177/002224378602300302.
[38] Cath, C. (2018). Governing Artificial Intelligence: Ethical, Legal and Technical Opportunities and Challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376. https://doi.org/10.1098/rsta.2018.0080 
[39] Tan, E. (2023). Designing An AI Compatible Open Government Data Ecosystem For Public Governance. Information Polity, 28(4), 541-557. https://doi.org/10.1177/09520767231188229 
[40] Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial Intelligence in Sustainable Energy Industry: Status Quo, Challenges and Opportunities. Journal of Cleaner Production, 289, 125834. https://doi.org/10.1016/j.jclepro.2021.125834