An Analytical Strategy For Understanding The Trajectory of Development Of Artificial Intelligence In Iran

Document Type : editor

Authors

1 Graduate School of Management and Economics, Sharif University of Technology, Tehran, Iran

2 Graduate School of Management and Economics, Sharif University of Technology, Tehran, Iran.

Abstract

This editorial aims to provide an analytical framework for understanding the trajectory of artificial intelligence (AI) development by examining four key macro-challenges in AI policymaking: 1) the lack of consensus on the definition and scope of AI technologies, 2) the wide diversity of AI applications and implications, which has led to complexities in formulating general public policies or sector-specific regulations, 3) the conflict of interests among various stakeholders (e.g., government, private sector, and society), which has made policy consensus difficult to achieve, and 4) the tension between international cooperation and national legal and policy frameworks, confronting policymakers with the duality of techno-nationalism and techno-globalism. Drawing on the "large technical systems" framework, this editorial analyzes AI development as a multidimensional phenomenon and explores its five developmental stages. In this context, while introducing the special issue "Artificial Intelligence and the Future of Iran: Questions, Challenges, and Opportunities," it is demonstrated that the articles within this issue address the infrastructural, legal, ethical, and practical dimensions of AI in Iran, each examining a segment of this large technical system through its own analytical lens. Ultimately, it is proposed that the dual frameworks of AI macro-challenges and its study as a large technical system can foster coordination among researchers in this field and create conditions for designing and implementing a cohesive and effective AI policy.

Keywords


1] Wu, W., Huang, T., & Gong, K. (2020). Ethical Principles And Governance Technology Development of AI In China. Engineering, 6(3), 302-309. https://doi.org/10.1016/j.eng.2019.12.015 
[2] Gasser, U., & Almeida, V. (2017). The Ethics of Artificial Intelligence: A Literature Review. Computers in Human Behavior, 73, 220-229. https://doi.org/10.1016/j.chb.2017.03.002.
[3] Shukla, S. (2024). Principles Governing Ethical Development and Deployment of AI. International Journal of Engineering, Business and Management. https://doi.org/10.22161/ijebm.8.2.5 
[4] Schneider, J., Abraham, R., Meske, C., & Vom Brocke, J. (2023). Artificial Intelligence Governance for Businesses. Information Systems Management, 40(3),229-249. https://doi.org/10.1080/10580530.2022.2085825 
[5] Choung, H., David, P., & Seberger, J. S. (2024). A Multilevel Framework for AI Governance. In The Routledge Handbook of Global and Digital Governance Crossroads (pp. 310-323). Routledge India. https://doi.org/10.4324/9781003316077-25 
[6] Winfield, A. F., & Jirotka, M. (2018). Ethical Governance is Essential to Building Trust in Robotics and Artificial Intelligence Systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2133), 20180085. https://doi.org/10.1098/rsta.2018.0085 
[7] Gill, A. S., & Germann, S. (2022). Conceptual and Normative Approaches to AI Governance for a Global Digital Ecosystem Supportive of the UN Sustainable Development Goals (SDGs). AI and Ethics2(2), 293-301. https://doi.org/10.1007/s43681-021-00058-z 
[8] Stark, L., Greene, D., & Hoffmann, A. L. (2021). Critical Perspectives on Governance Mechanisms for AI/ML Systems. The cultural life of machine learning: An incursion into critical AI studies, 257-280. https://doi.org/10.1007/978-3-030-56286-1_9 
[9] Sigfrids, A., Nieminen, M., Leikas, J., & Pikkuaho, P. (2022). How Should Public Administrations Foster the Ethical Development and Use of Artificial Intelligence? A Review of Proposals for Developing Governance of AI. Frontiers in Human Dynamics, 4, 858108. https://doi.org/10.3389/fhumd.2022.858108 
[10] Rajagopal, M., Sivasakthivel, R., Ramar, G., Mansurali, A., & Karuppasamy, S. K. (2023, October). A Conceptual Framework for AI Governance in Public Administration–A Smart Governance Perspective. In 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 488-495). IEEE. https://doi.org/10.1109/i-smac58438.2023.10290366 
[11] Taeihagh, A. (2021), Governance of Artificial Intelligence, Policy and Society, 40 (2), 137–57. https://doi.org/10.1080/14494035.2021.1928377 
[12] de Almeida, P. G. R., dos Santos, C. D., & Farias, J. S. (2021). Artificial Intelligence Regulation: a Framework for Governance. Ethics and Information Technology23(3), 505-525. https://doi.org/10.1007/s10676-021-09593-z 
[13] Kurshan, E., Shen, H., & Chen, J. (2020, October). Towards Self-Regulating AI: Challenges and Opportunities of AI Model Governance In Financial Services. In Proceedings of the First ACM International Conference on AI in Finance (pp. 1-8). https://doi.org/10.1145/3383455.3422564 
[14] Perry, M., & Uuk, M. (2019). AI Governance: Policy Frameworks, Strategies, and the Challenges of Integration. International Journal of Public Administration, 42(7), 598-611. https://doi.org/10.1080/01900692.2019.1633503.
[15] Schiff, D., Biddle, J., Borenstein, J., & Laas, K. (2020, February). What's Next for Ai Ethics, Policy, and Governance? A Global Overview. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 153-158). https://doi.org/10.1145/3375627.3375804 
[16] Ortega, E., Tran, M., & Bandeen, G. (2023). AI Digital Tool Product Lifecycle Governance Framework Through Ethics and Compliance by Design. 2023 IEEE Conference on Artificial Intelligence (CAI), 353–356. https://doi.org/10.1109/cai54212.2023.00155 
 [17] United Nations Development Programme, (1997) Governance for Sustainable Human Development. https://doi.org/10.18356/078473ef-en 
[18]  Hajihoseini, H. and Karimmian, Z. (2019). STI Policy Process and Its Governance. Journal of Science and Technology Policy, 12(2), 71-86.
doi: 20.1001.1.20080840.1398.12.2.6.1
[19] Paul, R. Carmel, E. Cobbe, J. (2024) Handbook on Public Policy and Artificial Intelligence, Political Science and Public Policy Subject Collection http://dx.doi.org/10.4337/9781803922171.
[20] Gil-Garcia, J. R., Zhang, J., & Puron-Cid, G. (2016). Conceptualizing Smartness in Government: an Integrative and Multi-Dimensional View. Government Information Quarterly, 33(3), 524–534. https://doi.org/10.1016/j.giq.2016.03.002 
[21] Chatterjee, S., Kar, A. K., & Gupta, M. P. (2018). Success of Iot in Smart Cities of India: An Empirical Analysis. Government Information Quarterly, 35(3), 349–361. doi:10.1016/j.giq.2018.05.00.
[22]  Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies, Oxford University Press , ISBN: 978-0199678112. https://doi.org/10.1007/s11023-015-9377-7 
[23] Fetais, A., Faisal, M., Sabir, L., & Esmael, B. (2022). Artificial Intelligence Adoption for E-Government: Analysis of Enablers in an Emerging Economy. Int. J. Electron. Gov. Res., 18, 1-21.  https://doi.org/10.4018/ijegr.300773 
[24] Saura, J. R., & Debasa, F. (Eds.). (2022). Handbook of research on artificial intelligence in Government Practices and Processes. IGI Global. https://doi.org/10.4018/978-1-7998-9609-8 
[25] Aria, M. & Cuccurullo, C. (2017) Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis, Journal of Informetrics, 11(4), pp 959-975, Elsevier. https://doi.org/10.1016/j.joi.2017.08.007 
[26] Lilkov, D. (2021). Regulating Artificial Intelligence in the EU: A risky game. European View, 20, 166–174. https://doi.org/10.1177/17816858211059248 
[27]  Farshid, R. , Faraji, A. and Jafari, S. (2022). Analysing the Content of Global Smart City Studies in Dealing with the Covid-19 Pandemic. Journal of Science and Technology Policy, 15(2), 39-54. doi: 10.22034/jstp.2022.13940
[28] Hosseini, E., Taghizadeh Milani, K., & Sabetnasab, M. S. (2025). Development and Maturity of co-word Thematic Clusters: the Field of Linked Data. Library Hi Tech, 43(1), 81-113. https://doi.org/10.1108/lht-10-2022-0488 
[29] Cobo, M., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An Approach for Detecting, Quantifying, And Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory field. Journal of Informetrics, 5, 146-166. https://doi.org/10.1016/j.joi.2010.10.002 
[30] Bai, Y., Li, H., & Liu, Y. (2020). Visualizing Research Trends and Research Theme Evolution in E-Learning Field: 1999–2018. Scientometrics, 126, 1389-1414. https://doi.org/10.1007/s11192-020-03760-7 
[31] Zhao, R., & Wu, S. (2014). Study on Themes and Authors’ Influence of Open Access in China. Scientometrics, 101, 1165-1177. https://doi.org/10.1007/s11192-014-1415-3 
[32] Chun-lei, Y., & Lu, F. (2012). The Research of Theme Identification in Scientific Documents. 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 3, 715-718. https://doi.org/10.1109/csae.2012.6273049 
[33] Li, Q., Han, J., Ko, Y. O. J., Li, Q., & Lo, C. (2020). A Content Mining and Network Analysis Method for the Thematic Evolution of Educational Leadership. Journal of Scientific Methods Studies, 10, 86-98. https://doi.org/10.33168/jsms.2020.0307 
[34] Sitarz, R., & Kraslawski, A. (2012). Application of Semantic and Lexical Analysis to Technology Forecasting by Trend Analysis - Thematic Clusters in Separation Processes. Computer-Aided Chemical Engineering, 30, 437-441. https://doi.org/10.1016/b978-0-444-59519-5.50088-5 
[35] Glänzel, W., Heeffer, S., & Thijs, B. (2017). Lexical Analysis of Scientific Publications for Nano-Level Scientometrics. Scientometrics111, 1897-1906. https://doi.org/10.1007/s11192-017-2336-8 
[36] Wang, S., & Koopman, R. (2017). Clustering Articles Based on Semantic Similarity. Scientometrics111, 1017-1031. https://doi.org/10.1007/s11192-017-2298-x 
[37] Hoffman, D., & Franke, G. (1986). Correspondence Analysis: Graphical Representation of Categorical Data in Marketing ResearchJournal of Marketing Research, 23, 213 - 227. https://doi.org/10.1177/002224378602300302.
[38] Cath, C. (2018). Governing Artificial Intelligence: Ethical, Legal and Technical Opportunities and Challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376. https://doi.org/10.1098/rsta.2018.0080 
[39] Tan, E. (2023). Designing An AI Compatible Open Government Data Ecosystem For Public Governance. Information Polity, 28(4), 541-557. https://doi.org/10.1177/09520767231188229 
[40] Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial Intelligence in Sustainable Energy Industry: Status Quo, Challenges and Opportunities. Journal of Cleaner Production, 289, 125834. https://doi.org/10.1016/j.jclepro.2021.125834