فرایند نوآوری سامانه‌های محصول‌پیچیده در صنعت هوانوردی ایران:برهم کنش مهندسی معکوس و مهندسی رو به جلو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت تکنولوژی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران

2 عضو هیئت علمی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران

3 عضو هیئت علمی، مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران.

چکیده

با توجه به الگوی متفاوت تکامل و توسعه سامانه‌های محصول‌پیچیده (CoPS) در مقایسه با مدل‌‌های نوآوری مرسوم، این مقاله به بررسی فرایند تطور و تکامل نوآوری در سامانه‌های محصول‌پیچیده در صنعت هوانوردی ایران با استفاده از مفهوم مدل‌‌ چرخه عمر در مهندسی سیستم‌‌ها می‌‌پردازد. در این مقاله، مدلی برای شناسایی و تحلیل مراحل نوآوری محصول در CoPS با تمرکز بر آشکار کردن برهم کنش بین مهندسی معکوس و مهندسی روبه‌‌‌‌جلو توسعه می‌‌یابد. برای این منظور، ابتدا با مرور پیشینه و بررسی مدل‌‌های چرخه عمر CoPS در مهندسی سیستم، چارچوبی مفهومی برای مطالعه فرایند نوآوری در CoPS ایجاد شد. سپس، از طریق مطالعه چندموردی مبتنی‌‌بر تحلیل‌‌های توالی زمانی سه محصول پیچیده در صنعت هوانوردی، یک مدل فرایندی مبتنی‌‌بر چرخه عمر در CoPS توسعه یافت که شامل مراحل مهندسی معکوس و بازیابی طراحی (دربرگیرنده مراحل ارزشیابی و تحلیل داده‌‌ها، تولید بسته داده فنی، تصدیق طراحی، تکمیل بسته داده فنی و پیاده‌‌سازی طراحی)، مفهوم، توسعه، تولید، بهره‌‌برداری، پشتیبانی و کنارگذاری است. یافته‌‌های ما چندین ویژگی بارز را درخصوص مدل نوآوری CoPS در صنعت هوانوردی ایران به شرح زیر نشان می‌‌دهد. این مدل، سیستمی پیچیده از فرایندهایی است که دارای ویژگی‌‌های همزمانی، تکرارشوندگی، بازگشتی بودن و بهم وابستگی هستند. طی فرایند نوآوری محصول، مهندسی معکوس و مهندسی روبه‌جلو برهم تأثیر متقابل می‌گذارند. همچنین، این مدل چارچوبی نظام‌‌مند و کاربردی به منظور مدیریت بهتر فرایند نوآوری در سامانه‌های محصول‌پیچیده‌‌ای فراهم می‌‌کند که براساس ایده‌‌ها و داده‌‌های فنی حاصل از مهندسی معکوس در تعامل با مهندسی روبه‌‌جلو و طراحی مستقیم شکل می‌‌گیرند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Innovation Process in Complex Product Systems in Iran's Aviation Industry: The Interaction of Reverse Engineering and Forward Engineering

نویسندگان [English]

  • Maryam Rozesara 1
  • Soroush Ghazinoori 2
  • Manochehr Manteghi 3
  • Seyed Habibollah Tabatabaeian 2
1 PhD Candidate in Technology Management, Department of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.
2 Faculty Member, Department of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran
3 Faculty Member, University Complex of Management and Soft Technology, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

Due to the different pattern of evolution of complex product systems in comparison with conventional innovation models, this paper examines the evolution of innovation in complex product systems in Iran's aviation industry using the concept of life cycle model in systems engineering. In this paper, a model for identifying and analyzing innovation stages in CoPS is developed with a focus on revealing the interaction of reverse and forward engineering. For this purpose, first, by reviewing the literature and life cycle models in CoPS, a conceptual framework was developed. Then, by chronological multiple case study of three CoPS in the aviation industry, a life cycle-based innovation process model in CoPS was developed. This model includes following stages: reverse engineering and design recovery (including data evaluation and analysis, technical data package generation, design verification, technical data package completion and design implementation), concept, development, production, operation, support and retirement. Our findings show several salient features of innovation process in CoPS in Iran's aviation industry as follows. This model is a complex system of processes which are concurrent, iterative, recursive and interdependent. During the product innovation process, reverse and forward engineering interact with each other. Also, this model provides a systematic and pragmatic framework for better management of the innovation process in complex product systems that are designed and produced based on ideas and technical data obtained from reverse engineering in intraction with forward engineering (direct design).
 

کلیدواژه‌ها [English]

  • Innovation Process
  • Complex Product Systems (CoPS)
  • Reverse Engineering
  • Forward Engineering
  • Aviation Industry
[1] Simon, H.A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467-482.

[2]‏ Hobday, M., Rush, H., & Joe, T. (2000). Innovation in complex products and systems. Research policy, 29(7-8), 793-804.‏

[3] Davies, A., & Hobday, M. (2005).The business of projects: managing innovation in complex products and systems. Cambridge University Press.‏

[4] Hobday, M. (1998). Product complexity, innovation and industrial organisation. Research policy, 26(6), 689-710.‏

[5] Davies, A. (1997). The life cycle of a complex product system. International Journal of Innovation Management, 1(03), 229-256.‏

[6] Safdari Ranjbar, M., Park, T. Y., & Kiamehr, M. (2018). What happened to complex product systems literature over the last two decades: progresses so far and path ahead. Technology Analysis & Strategic Management, 30(8), 948-966.

[7] Bonaccorsi, A., & Giuri, P. (2000). When shakeout doesn’t occur: the evolution of the turboprop engine industry. Research Policy, 29(7-8), 847-870.

[8] Arasti, Mohammad Reza (2021). Guest Editor: About this special issue and complex product systems (SAMP). Science and Technology Policy, 13 (4), 1-1. {In Persian}.

[9] Bhise, V. D. (2013). Designing complex products with systems engineering processes and techniques. CRC Press.‏

[10] INCOSE, B. (2015). Systems engineering handbook: A guide for system life cycle processes and activities. San Diego, US-CA: International Council on Systems Engineering.‏

[11] Usher, A. P. (1955). Technical change and capital formation. In Capital formation and economic growth (pp. 523-550). Princeton University Press.‏

[12] Knight, K. (1967). A descriptive model of the intra-firm innovation process. The Journal of Business, 40(4), 478–496.

[13] Bessant, J., & Tidd, J. (2007). Innovation and entrepreneurship. Chichester: John Wiley.

[14] Rothwell, R., (1994). Towards the fifth-generation innovation production process. Overseasmarketing Rev. 11 (1), 7–31.

[15] Rogers, E.M., )1995(. Diffusion of Innovations.fourth ed. The Free Press, New York.‏

[16] Galanakis, K. (2006). Innovation process. Make sense using systems thinking .Technovation, 26(11), 1222-1232.‏

[17] Koen, P., Ajamian, G., Burkart, R., Clamen, A., Davidson, J., D'Amore, R., ... & Karol, R. (2001). New concept development model: Providing clarity and a common language to the “fuzzy front end”. Research-Technology Management, 44(2), 46-55.

[18] Miller, R., Hobday, M., Leroux-Demers, T., & Olleros, X. (1995). Innovation in complex systems industries: the case of flight simulation. Industrial and corporate change, 4(2), 363-400.

[19] ISO/IEC TS 24748-1, 2016. Standard ISO/IEC TS 24748-1:2016 Systems and software engineering — Life cycle management, part 1: guidelines for life cycle management.

[20] Van de Ven, A. H., & Poole, M. S. (1995). Explaining development and change in organizations. Academy of management review, 20(3), 510-540.‏

[21] Utterback, J. M., & Abernathy, W. J. (1975). A dynamic model of process and product innovation. Omega, 3(6), 639-656.

[22] Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology review, 80(7), 40-47.

[23] Hirshorn, S. R., Voss, L. D., & Bromley, L. K. (2017). Nasa systems engineering handbook.

[24] ISO/IEC/IEEE, 2015. Standard ISO/IEC/IEEE 15288:2015 Systems and software engineering — System life cycle processes.

[25] Forsberg, K., Mooz, H., & Cotterman, H. (2005). Visualizing project management: models and frameworks for mastering complex systems. John Wiley & Sons.

[26] Instruction, 5000.02, Operation of the defense acquisition system, 7 January 2015. U.S. Department of Defense, Washington, DC, 2015.

[27] Prencipe, A. (1997). Technological competencies and product's evolutionary dynamics a case study from the aero-engine industry. Research policy, 25(8), 1261-1276.

[28] Prencipe, A. (2000). Breadth and depth of technological capabilities in CoPS: the case of the aircraft engine control system. Research policy, 29(7-8), 895-911.‏

[29] Brusoni, S., Prencipe, A., & Pavitt, K. (2001). Knowledge specialization, organizational coupling, and the boundaries of the firm: why do firms know more than they make?. Administrative science quarterly, 46(4), 597-621.

[30] Lee, J. J., & Yoon, H. (2015). A comparative study of technological learning and organizational capability development in complex products systems: Distinctive paths of three latecomers in military aircraft industry. Research policy, 44(7), 1296-1313.

[31] Naghizadeh, M., Manteghi, M., Ranga, M., & Naghizadeh, R. (2017). Managing integration in complex product systems: The experience of the IR-150 aircraft design program. Technological forecasting and social change, 122, 253-261.‏

[32] Tahmasebi, S., Fartookzadeh, H., Bushehri, A., Tabaian, K., & Khelejani, J. G. (2017). The Stages of Formation and Development of Technological Capabilities; Case study: An marine Industry Organization. Journal of Science and Technology Policy, 8(4).{In Persian}.

[33] Kiamehr, M. (2017). Paths of technological capability building in complex capital goods: The case of hydro electricity generation systems in Iran. Technological Forecasting and Social Change, 122, 215-230.

[34] Majidpour, M. (2016).Technological catch-up in complex product systems. Journal of Engineering and Technology Management, 41, 92-105.

[35] Safdari, R. M., Rahmanseresht, H., Manteghi, M., & Ghazinoori, S. (2018). Sectoral Innovation System of a Complex Product System Industry: Gas Turbine. Journal of Science and Technology Policy {In Persian}.

[36] Yin, R. K. (2017). Case study research and applications: Design and methods. Sage publications.‏

[37] Eisenhardt, K. M. (1989). Building theories from case study research. Academy of management review, 14(4), 532-550.

[38] Ragin, C. C. (1987). The comparative method: Moving beyond qualitative and quantitative strategies. Univ of California Press.

[39] Miles, M.B., Huberman, A.M. and Saldaña, J., 2018. Qualitative data analysis: A methods sourcebook. Sage publications.

[40] Ford, S.J., Routley, M., Phaal, R., O’Sullivan, E., Probert, D.R., (2011). Expert Scan: Guidance For Interview-Based Mapping Of Historical Industrial Emergence, Evolution, Development And Change. Institute for Manufacturing, Cambridge.

[41] Henderson, R. M., & Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative science quarterly, 9-30.

[42] Rekoff, M. G. (1985). On reverse engineering. IEEE Transactions on systems, man, and cybernetics, (2), 244-252.

[43] Ingle, K. A. (1994). Reverse engineering. McGraw-Hill Professional Publishing.‏

[44] Zhang, G. and Zhou, J., (2016). The effects of forward and reverse engineering on firm innovation performance in the stages of technology catch-up: An empirical study of China. Technological forecasting and social change, 104, pp.212-222.

[45] Otto, K.N. and Wood, K.L.(1998). Product evolution: a reverse engineering and redesign methodology. Research in engineering design, 10(4), pp.226-243.

[46] MIL-STD-31000B, 2018. MILITARY STANDARD: TECHNICAL DATA PACKAGE (TDP) (31-OCT-2018).

[47] Nelson, R. R. (Ed.). (1993). National innovation systems: a comparative analysis. Oxford University Press on Demand.

[48] Lu, Q., 2011. China's leap into the information age: innovation and organization in the computer industr. Oxford University Press.

[49] Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: A taxonomy. IEEE software, 7(1), 13-17.

[50] Trott, P. and Hoecht, A., (2007). Product counterfeiting, non‐consensual acquisition of technology and new product development. European Journal of Innovation Management.

[51] Sharples, R. E. (2010). The efficiency of reverse engineering in the design of the ORCA XI autonomous underwater vehicle by Rachel E. Sharples (Doctoral dissertation, Massachusetts Institute of Technology).‏